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Driven Frenkel-Kontorova model. I. Uniform sliding states and dynamical domains
of different particle densities

Torsten Strunz and Franz-Josef Elmer
Institut für Physik, Universita¨t Basel, CH-4056 Basel, Switzerland

~Received 4 September 1997; revised manuscript received 5 February 1998!

The dynamical behavior of a harmonic chain in a spatially periodic potential~Frenkel-Kontorova model,
discrete sine-Gordon equation! under the influence of an external force and a velocity proportional damping is
investigated. We do this at zero temperature for long chains in a regime where inertia and damping as well as
the nearest-neighbor interaction and the potential are of the same order. There are two types of regular sliding
states: uniform sliding states, which are periodic solutions where all particles perform the same motion shifted
in time; and nonuniform sliding states, which are quasiperiodic solutions where the system forms patterns of
domains of different uniform sliding states. We discuss the properties of this kind of pattern formation, and
derive equations of motion for the slowly varying average particle density and velocity. To observe these
dynamical domains, we suggest experiments with a discrete ring of at least 50 Josephson junctions.
@S1063-651X~98!11608-2#

PACS number~s!: 46.10.1z, 03.20.1i, 74.50.1r
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I. INTRODUCTION

Sixty years ago, Frenkel and Kontorova introduced
simple model which has become popular in many fields
solid-state physics and nonlinear dynamics@1#. They in-
vented their model in order to describe the motion of a d
location in a crystal@2#. Meanwhile, the Frenkel-Kontorov
~FK! model has become also a model for an adsorbate l
on the surface of a crystal@3,4#, for ionic conductors@5,6#,
for glassy materials@5,4,7#, for charge-density-wave~CDW!
transport @8#, for chains of coupled Josephson junctio
@8,9#, and for sliding friction@10#.

The FK model is a chain of particles with massm coupled
by a harmonic nearest-neighbor interaction with stiffnessk.
It is under the influence of an external spatially periodic p
tential with periodicityc and strengthU0. Here we study the
nonequilibrium behavior of the FK model driven by a for
F̃. We assume energy dissipation due to a usual dam
force with a damping constanth. After rescaling time and
space, one obtains the following equation of motion in
mensionless units:

ẍ j1g ẋ j5xj 211xj 1122xj2b sin xj1F, ~1!

where g[h/Akm, b[(2p/c)2U0 /k, and F[(2p/
c)F̃/k. The time and space units areAm/k and c/2p, re-
spectively. We assume periodic boundary conditions, i.e

xj 1N5xj12pM , ~2!

where N is the number of particles andM is an arbitrary
integer. Note that the periodic boundary condition impl
that the average particle density 1/a is constant, i.e.,
PRE 581063-651X/98/58~2!/1601~11!/$15.00
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Due to symmetries,a can be restricted toaP@0,p# without
loss of generality.

The dynamical behavior of the FK model has alrea
been studied in several limits:~i! in the overdamped limit
~i.e., ẍ j can be neglected! for largeN @8,11#; ~ii ! in the limit
of zero damping and driving~i.e., g5F50) for a/2p near
integer values, allowing well separated 2p kinks @12# as well
as for the most incommensurate value~i.e., the golden mean!
of a/2p @13#; and ~iii ! in the underdamped case for sma
N (N<10) @9,14#. In a series of papers, Braun and c
workers recently studied recently the underdamped dynam
of a generalized FK model withN.100 buta near zero and
p @15–17#.

In this series of two papers, we study the underdam
FK model for large numbers of particles~i.e., N.100). We
do not restrict ourselves to values ofa/2p near integer or
half integer values where the dynamical behavior can be
scribed in terms of kinks. The system has stationary, p
odic, quasiperiodic, and chaotic solutions. Of special inter
is the transition from stationarity to sliding, the so-calle
pinning-depinning transition, and the backward process. I
the first paper, we investigate the periodic and quasiperio
solutions. The second paper will be concerned with
depinning-pinning transition between stationary states
spatiotemporal chaos. Preliminary results have already b
published in a conference proceedings@18#.

In Sec. IV, we will see that the FK model spontaneou
forms spatial-temporal patterns as many other spatially
tended systems driven far from equilibrium@19#. These pat-
terns are caused by the bistability and instability of theuni-
form sliding state. In the uniform sliding state all particle
perform exactly the same regular and periodic motion. D
ferent particles differ only in the phase of this motion. T
phase difference of two neighboring particles is the sa
1601 © 1998 The American Physical Society
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everywhere. That is, the density of particles is on aver
constant along the chain. The uniform sliding state is
only nonstationary state in the overdamped limit@20# but it
has also be studied in the underdamped case@9,21#.

The discreteness of the chain leads to severalresonances
in the underdamped limit@9,14,21,22#. The consequence i
bistability. For spatially extended bistable systems it is w
known that domainlike patterns are possible@19#. In the FK
model these domains can be characterized by the ave
particle density 1/a and the average particle velocityv. We
find that states with two or three different types of doma
survive in the long-time limit. The number and the width
the domains can vary, leading to a quite large number
possible solutions. Because of different average velocitie
different domain types, the motion in the domain solutions
quasiperiodic. Assuming thata and v are slowly varying
functions in time and space, we derive an approximate eq
tion of motion for them. With its help we understand why t
domains do not disappear in the long-time limit, and w
there are not more than three different domain types. Furt
more, it turns out that the state in the long-time limit can
understood as a spatially chaotic solution of a correspond
dynamical system. A special variant of these domain so
tions is thetraffic-jam statewhere the particle velocity in one
domain is zero@15–17#.

The paper is organized as follows: In Sec. II, we der
two different but mathematically equivalent formulas for t
relation between the forceF and the average sliding velocit
v. In Sec. III, the periodic solution~i.e., the uniform sliding
state! and its stability are discussed. The domainlike sta
are investigated in Sec. IV. In Sec. V, the main part of
paper concludes with some remarks concerning possible
perimental observations of these domainlike states and s
larities to other pattern forming systems. The appendixes
scribe our numerical and analytical scheme to obtain
uniform sliding state and to analyze its stability.

II. AVERAGE SLIDING VELOCITY AND EFFECTIVE
FRICTION FORCE

The average sliding velocityv of the chain reads

v5 lim
T→`

1

TE0

T 1

N (
j 51

N

ẋjdt. ~4!

Plotting the measured or calculated values ofv for different
values of the applied forceF, one obtains the so-calle
velocity-force characteristic. In CDW systems and
Josephson-junction arrays, it corresponds to the curr
voltage and voltage-current characteristics, respectively
the context of friction,F can be interpreted as the effectiv
kinetic friction as a function of the sliding velocityv.

There are two mathematically equivalent relationships
tweenF andv. The first one can be obtained by taking t
time average of the sum of Eq.~1! over all particles:

F5gv1 lim
T→`

1

TE0

T b

N (
j 51

N

sin xj~ t !dt. ~5!
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This formula assumes that the average acceleration of
chain is zero. The other relationship can be derived from
fact that the energy released during sliding has to be di
pated totally, i.e.,

Fv5g lim
T→`

1

TE0

T 1

N (
j 51

N

ẋj
2dt.

Using Eq.~4!, we obtain

F5gvF11 lim
T→`

1

TE0

T 1

N (
j 51

N S ẋ j

v
21D 2

dtG . ~6!

This result clearly shows that in the case of no dissipat
~i.e.,g50) the chain may slide without any applied force.
Sec. III B, we will discuss the condition of this possibility
Equation~6! also shows that the mobilityv/F is always less
than or equal to 1/g, i.e., the mobility in the limitb→0.

III. UNIFORM SLIDING

Because of the symmetries of the equation of moti
there exist nonstationary solutions calleduniform sliding
states. They are characterized by the fact that every parti
performs the same motion but is shifted in time. That
xj 11(t)5xj (t1T1), for j 51, . . . ,N. Thus we need only one
function, thedynamic hull function f, to describe the motion
of all particles@21,11,8,9#:

xj~ t !5c1a j1vt1 f ~c1a j1vt !, ~7!

wherev is the average sliding velocity andc is an arbitrary
phase. Because of the discrete translation symmetry of
~1!, the Hull function is periodic, i.e.,

f ~w12p!5 f ~w!. ~8!

Plugging ansatz~7! into the equation motion~1! leads to a
differential delay equation for the hull functionf (w):

v2f 9~w!1gv@11 f 8~w!#5 f ~w1a!1 f ~w2a!22 f ~w!

2b sin@w1 f ~w!#1F. ~9!

The average sliding velocityv has to be chosen in such
way that a 2p-periodic function fulfills Eq.~9!. If f (w) is a
solution, thenf (w1c)1c is also a solution. We make th
definition of the dynamic hull function unique by restrictin
the solutions of Eq.~9! to 2p-periodic functions with zero
average, i.e.,

E
0

2p

f ~w!dw50. ~10!
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For the uniform sliding state~9!, the relationships~5! and
~6! betweenv andF reduce to

F5gv1
b

2pE0

2p

sin@w1 f ~w!#dw ~11!

and

F5gvS 11
1

2pE0

2p

@ f 8~w!#2dw D , ~12!

respectively.
Instead of solving Eq.~9! for a given value ofF, it is

more convenient to replaceF by Eq. ~11! or ~12! and solve
Eq. ~9! for a given value ofv. From the solutionf (w) one
obtains the correspondingF. In the overdamped limit, it is
well known thatF is a monotonically increasing function o
v @20,8#. In the underdamped case,resonanceslead to non-
monotonic velocity-force characteristics@23#.

A. Resonances

We solve the hull-function equation~9! numerically by
expandingf into a Fourier series. The details are describ
in Appendix A. Figure 1 shows an example of a dynam
Hull function.

In the underdamped case the numerically obtain
velocity-force characteristics exhibits clearly peaks, as
be seen in Fig. 2. Near these peaks an increase of the dr
force F by a considerable amount leads only to a slight
crease of the average velocityv. In other words, the differ-
ential mobilitydv/dF is much lower than the mobility with-
out any periodic potential~i.e., 1/g). The reason for this
behavior is that the additional energy is only partially turn
into a larger kinetic energy of the center of mass of the ch
whereas the main part is turned into oscillatory motion of
particle due to resonances.

In the frame of the center of mass which moves w
average sliding velocityv, the external potential leads to
time-periodic force acting on the particle. The frequency
this force, the so-called ‘‘washboard frequency,’’ is given

FIG. 1. The dynamic hull functionf (w). The inset shows the
corresponding particle position as a function of time. The para
eters area/2p5(32A5)/2, b52, v50.75, andg50.5. Be-
cause the solution is obtained by the method described in Appe
A, the average sliding velocityv is prescribed. The correspondin
value ofF is approximately 0.74.
d

d
n

ing
-

n,
e

f

the velocity of the center of mass divided by the period
the potential. Resonance occurs if the washboard freque
is equal to the eigenfrequency of the phonon with wave nu
berk5a. To see this, we solve Eq.~9! in the approximation
sin@w1f(w)#' sinw. We obtain

f ~w!'
ib/2

v2~a!2v21 igv
eiw1c.c., ~13!

wherev(k) is the phonon dispersion relation

v~k!52UsinS k

2D U. ~14!

In order to obtain the corresponding value ofF, one can use
either Eq. ~11! or Eq. ~12!. Although both equations are
equivalent, for the approximation~13! we obtain different
results. Evaluating Eq.~11! leads to the obviously wrong
resultF5gv. This can be understood from the fact that E
~13! is only the leading term of an expansion of the h
function in powers ofb. Thus F5gv1O(b2). Instead of
calculating the next order inf , one can use Eq.~12!, which
leads to

F5gvS 11
b2/2

@v2~a!2v2#21g2v2
1O~b4!D . ~15!

Note thatF has to be an even function ofb because the
external potentialb cosx is an odd function ofx2p/2. For
large values ofv, Eq. ~13! approaches zero, and therefo
F→gv. That is, if the washboard slides very fast, the p

-

ix

FIG. 2. Velocity-force characteristic of the uniform sliding sta
~7!. Solid ~dotted! lines indicate stable~unstable! solutions. Dashed
and dashed-dotted lines in the inset denote analytically obta
approximations given by Eqs.~15! and ~A9!, respectively. The pa-
rameters area/2p5(32A5)/2, g50.5, andb51 ~left curve!
and b52 ~right curve and inset!. The arrows denote the resona
values ofv given by Eq.~16!. The numbers indicate the ordern.
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ticles cannot follow the swift pushing by the washboa
Thus the chain slides like a rigid solid. We call this state
solid-sliding state.

Figure 2 shows that for large values ofb ~or small values
of g) the simple approximation~15! overestimates the
strength of the resonance line. That is, there is an effec
damping, larger thang, which increases with increasing o
cillation amplitude. This larger damping can be understo
by phonon coupling due to the nonlinearity in the equation
motion. This coupling opens up additional channels for
ergy dissipation yielding a higher effective damping co
stant. The inset of Fig. 2 shows that a remarkably good
proximation of these additional dissipation processes is gi
by the Galerkin approximationf (w)5A cos(w1c). Project-
ing the hull-function equation~9! together with this ansatz
onto sinw and cosw leads to two transcendental equatio
for A andc. After elimination ofc, one can parametrize th
velocity-force characteristic by the amplitudeA @see Eq.
~A9! in Appendix A#.

In order to understand the other resonance peaks se
Fig. 2, one has to keep in mind that the external potential
only leads to a periodic driving force, but also to a modu
tion of the eigenfrequencies. Thus parametric proces
make it possible to excite other phonons. In the framew
of a perturbation theory withb as the smallness paramete
the elementary processes corresponding to these reson
lines are the decay ofn ‘‘washboard waves’’~wave number
a, frequencyv) into a single phonon with wave numberk
and frequencyv(k). Assuming momentum and energy co
servation, one obtainsk5na and v5vn , wherevn is the
superharmonic resonancefrequency of ordern:

vn[
v~na!

n
. ~16!

The positions of the first few resonances are shown in F
2. The agreement with the actual positions of the resona
peaks is quite good. Near the superharmonic resonanc
order n, the nth Fourier mode of the hull function has
maximum. For example, the square in Fig. 2 correspond
the hull function in Fig. 1, which is clearly dominated b
exp(2iw). Because of finite dissipation, superharmonic re
nances of higher order may be hidden behind a nearby r
nance of lesser order such as, e.g., the fourth resonan
Fig. 2.

The superharmonic resonance has been already inv
gated in the literature, experimentally@24# as well as theo-
retically @12,14,21,22#. The superharmonic resonance con
tion ~16! was observed first in numerical experiments
Aubry and de Seze@21,22#. They studied the FK model with
out damping but with a very small driving force. They foun
that the velocity of the center of mass did not increase
early in time but it was locked for finite time intervals
velocities given by Eq.~16!. They also studied the unde
damped and driven FK model@21#. Peyrard and Kruska
found the same locking phenomenon for the velocity of ap
kink @12#. In this case the resonance frequencies are give

ṽn[
ṽ~na!

n
with ṽ~k!5Ab1v2~k!. ~17!
.
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Ustinov, Cirillo, and Malomed also observed resonance li
in numerical simulations of the damped and driven F
model @14#. Van der Zantet al. reported evidence of thes
resonances in experiments with a ring of eight Joseph
junctions@24#.

The authors of Refs.@14# and @24# explained the reso-
nances found by the following mechanism, which leads
Eq. ~17!. The mechanism relies on the assumption thatp
kinks travel in the ring. Most of the time the particles are
a potential well. When a kink travels through a particle,
jumps into the neighboring well and oscillates. Because
the periodic boundary conditions the jumps occur in equid
tant time steps. The distance between two kinks in terms
the number of particles in between is given byN/M
52p/a. The kink velocityc is related to the average slidin
velocity v by v5ac. Superharmonic resonances of ordern
occur if the time interval between two jumps, i.e
(N/M )/c52p/v, is n times the oscillation time of the par
ticles, i.e., 2pn/v (̃k), whereg (̃k) given by Eq.~17!, is the
dispersion relation of the linearized equation of motion~1!.
The wave numberk times the distanceN/M has to be 2pn,
that is, k5an. According to this mechanism the superha
monic resonance condition is therefore Eq.~17!. This picture
is valid only if the distance between two kinks, i.e.,N/M
52p/a, is much larger than 1. That is, the motion can
described by kinks only ifa/2p is near an integer value
Thus we expect that Eq.~16! is valid for a5O(1), and Eq.
~17! for a!1. For example, the numerically obtained valu
of positions of the resonance peaks reported by Watanabet
al. @9# are closer to Eq.~16! than to Eq.~17! becausea.1.

B. Instabilities

In order to discuss the instability of the uniform slidin
state~7!, one has to investigate the dynamics of small p
turbationsdxj . They are governed by the equation of motio
~1! linearized around Eq.~7!:

d ẍ j1gd ẋ j5dxj 211dxj 1122dxj

2b cos@a j1vt1 f ~a j1vt !#dxj . ~18!

The periodic boundary condition~2! turns into dxj 1N
5dxj . In accordance with the Floquet-Bloch theorem, o
can write any solution of this equation as a sum of solutio
of the form

dxj~ t !5ck~a j1vt !e~2p i /N!k j1lkt, k51, . . . ,N,
~19!

where ck(w) is a 2p periodic function, andlk is the so-
called Floquet exponent. The uniform sliding state is stabl
the real part oflk is negative for all values ofk. There is
always a solution withl050. It is the Goldstone modedxj
5] txj5v1v f 8(a j1vt)[c0(a j1vt), which follows di-
rectly from differentiating Eq.~9!. Appendix B describes the
scheme we used to solve Eq.~18! numerically with the
Floquet-Bloch ansatz~19!. The dotted lines in Fig. 2 denot
unstable parts of the velocity-force characteristics.

Two different mechanisms may lead to an instability
the uniform sliding state. The first one isnegative differential
mobility, i.e., a negative slope in the velocity-force chara
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PRE 58 1605DRIVEN FRENKEL-KONTOROVA MODEL. I. . . .
teristic. A small positive velocity fluctuationv→v1dv ac-
celerates the chain because the applied force is larger
the force necessary to keep the new velocityv1dv constant.

The second type of instabilities is caused byparametric
resonance. In the framework of the multiphonon process,
corresponds to the decay ofn washboard waves into two
phonons with wave numberna/26q. A parametric reso-
nance of ordern can be expected for values of the avera
sliding velocityv, which are given by

vn
P~q!5

v~na/21q!1v~na/22q!

n
. ~20!

Because parametric resonance is a threshold phenome
the amplitudeb of the washboard wave has to exceed
critical value which is proportional tog1/n @19,25#. This is
true only for values ofv between the minimum and max
mum of Eq.~20!. For velocities outside this interval parame
ric resonance is still possible, but the threshold increases.
zero damping the uniform sliding state is unstable for a
value of v below a certain critical valuevc , which is ap-
proximately calculated in Appendix B:

vc'A16 cos2S a

4D12b. ~21!

The actual value ofvc obtained from the numerical stabilit
analysis agrees very well with this formula even for lar
values ofb. The numerical value ofvc is less than Eq.~21!,
but deviates not more than 10% forb,4.

IV. SLIDING DOMAINS

Near resonance peaks, the system is bistable and
therefore the opportunity to organize itself intodomainsof
different uniform sliding states. Figure 3 shows a typic
example with ten domains. There are only two types of
mains. Each domain is characterized by uniform slidi
That is, in each domain the particle motion is given by E
~7!, but the Hull functionf and the value ofa and v are

FIG. 3. Dynamical domains of different particle densities.
series of snapshots taken at equidistant time steps (dt52p/v) are
shown. Each dot denotes the position of a particle. A particu
zigzag shaped snapshot is highlighted. The zigs and zags c
spond to two different kinds of domains that are characterized
uniform sliding. The parameters areN5144, M555, b
52, g50.5, andF50.8.
an

e

on,

or
y

as

l
-
.
.

different in each domain. One can say that the domains
characterized by different particle densities 1/a. Neighboring
domains are separated by domain walls~fronts! of finite size.
Conservation of the number of particles implies that a fro
has to move with a velocity

v front5
a2v12a1v2

a22a1
, ~22!

where the average particle distance and the average pa
velocity of each domain type is given bya1,2 and v1,2, re-
spectively. From the viewpoint of the particles, we can e
press the front velocity in terms of how fast the front trave
from one particle to the next. It is given by

c5
v12v2

a22a1
. ~23!

Because Eqs.~22! and~23! are symmetric in the exchange o
the indices, all fronts propagate with the same velocity, le
ing the widths of the domains constant. The numbersN1,2 of
particles in each type of domain fulfill the constraints

N11N25N and a1N11a2N252pM5aN. ~24!

Because of 0,N1,2,N, the particle density for one type o
the domains is larger than 1/a, whereas for the other type it i
less than 1/a. In the following the type with the larger den
sity will be number 1. Thus

a1,a,a2 . ~25!

The average sliding velocityv of a domain state is given by

v5
v1N11v2N2

N
. ~26!

A domain-type state is in general a quasiperiodic mot
with three frequencies:v1 andv2 from the periodic motion
in each domain type; and 2pc/N from the cyclic motion of
the fronts through the system.

A. Two-domain state

To understand this kind of pattern formation we inves
gate two-domain states in detail. First, we have to discuss
relationship between the average sliding velocityv and the
average particle distancea for the uniform sliding state at a
fixed value ofF, i.e., thevelocity-distance characteristic. A
typical example is shown in Fig. 4~a!. As in the velocity-
force characteristic, resonances are responsible for folds

A two-domain state is completely characterized by tw
points on the stable branches of the velocity-distance c
acteristic which fulfill Eq.~25!. The velocityc of the front is
the slope of the line connecting both points~see Fig. 7!. The
sizes of the domains are determined by the solutions of
~24!.

From this consideration, one would expect a continuo
family of two-domain states parametrized by two real nu
bers. But this is not the case, as Fig. 5 clearly shows. In
numerical simulations we always found that the system
namically selects the same pair of points on the veloc
distance characteristic. This is true even ifa is changed as

r
re-
y
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long asaP(a1 ,a2). How does the system select a certa
pair of values fora1,2? A careful inspection of Fig. 5 reveal
that behind the fronts new domain states are selected. T
states are independent of the initial states. The interface
tween the new domain state and the old one does not for
front. It smears out, and in the long-time limit the doma
states approach to uniform densities with well-defined val
of a. Numerical experiments show that the stateaf behind
the front is uniquely defined by the stateai in front of the
front @see Fig. 4~b!#. Hence there is functional relation be
tween them:

af5A~ai !. ~27!

Together with Eq.~23!, we have a uniquely defined relatio

FIG. 4. ~a! The velocity-distance characteristic for the unifor
sliding states. Solid~dotted! lines indicate stable~unstable! states.
The dash-dotted horizontal~tilted! line denotesv5F/g ~the main
resonancev1). The open~filled! squares denote the initial~final!
domain states of the simulation shown in Fig. 5.~b! The numeri-
cally obtained values of the average particle distancesaf behind the
front for a given valueai in front of the front. Those data points ar
connected by a solid line where a continuous function is expec
The dotted line denotes the inverse function. The circle near
intersection of both functions denotes the values ofa1 anda2 of the
numerically found two-domain solution. The parameters areb
50.5, g50.5, andF50.6.

FIG. 5. Snapshots of the evolution of a two-domain state ta
at equidistant time steps (Dt512). The presentation is the same
in Fig. 3. The initial state is a two-domain state witha152p/100
and a252p/5. The initial positions and velocities of the particle
are calculated by using Eq.~7!. The parameters areN5250, M
525, b50.5, g50.5, andF50.6.
se
e-
a

s

betweenc, ai , andaf . This behavior fits into the genera
picture of front propagation in bistable systems@19# ~see also
Sec. IV B!. If we know function A, we can calculate the
values ofa1 anda2 by solvingA21(a)5A(a) @see also Fig.
4~b!#. Note that the values ofa1 anda2 are in general irra-
tional @26#. The value ofa determines only the sizes of th
domains. Whether the chain is commensurate or incomm
surate is irrelevant. But numerically we have never fou
such states for values ofa near integer multiples of 2p.

The selected values ofa1 anda2 are of course functions
of the applied forceF. Figure 6 shows the velocity-force
characteristic of the two-domain states. By varyingF they
disappear due to two reasons. First, one of the dom
shrinks to zero, and the velocity-force characteristics of
two-domain state and uniform sliding state come togeth
Second,a1 or a2 may move onto an unstable branch of t
velocity-distance characteristic. Thus the two-domain st
still exists but it has become unstable. In Fig. 6, the veloc
force characteristic of this unstable two-domain state is
noted schematically by dotted extensions.

B. Quasicontinuum description of the front

We have seen that the state of the domains can be
scribed by Eq.~7!. They are characterized bya1,2 andv1,2.
To describe the fronts in the same way, we assume thata and
v are continuous functions which are varying slowly in spa
and time. The space coordinate is the particle indexj . It
becomes a real variable in a quasicontinuum descript
Thus we writexj (t)5x( j ,t). The discrete Laplacianxj 11
1xj 2122xj can be written as an infinite series of differe
tial operators, i.e.,

xj 11~ t !1xj 21~ t !22xj~ t !54 sinh2S 1

2
] j D x~ j ,t !. ~28!

We generalize the ansatz~7! by assuming thatw is a function
of j and t, i.e.,

x~ j ,t !5w~ j ,t !1 f „w~ j ,t !…, f ~w12p!5 f ~w!, ~29!

where f is the solution of the Hull function equation~9!.
Now we define local values ofa andv by

d.
e

n

FIG. 6. Velocity-force characteristics for the uniform slidin
states and the two-domain states. Thick~thin! lines denote two-
domain~uniform sliding! states. Solid~dotted! lines indicate stable
~unstable! solutions. The parameters areN52584, M5987, b
52, andg50.5.
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a[] jw, and v[] tw. ~30!

Plugging the ansatz~29! into the equation of motion~1! and
averaging over the phasew, we obtain

] tv5D~] j !] ja1F2FU~a,v !, ~31a!

] ta5] jv, ~31b!

where

D~x![S sinh x/2

x/2 D 2

511
x2

12
1O~x4!, ~31c!

and FU(a,v) is the velocity-force characteristic of the un
form sliding state given by Eq.~11!. Equation~31a! is only
approximately correct because we have assumed that
Hull function f does not depend ona and v. Furthermore,
the ansatz~29! cannot be exact in a front. Nevertheless, t
approximation~31! is correct in leading order of a multiple
scale perturbation theory@27,28#.

In general, Eq.~31! cannot be solved analytically. But w
are able to discuss the front solutions qualitatively. Assu
ing stationarity of the front in the comoving frame, we obta

a~ j ,t !5a~ j 2ct!, v~ j ,t !5v~ j 2ct!, ~32!

wherec is the front velocity~23!. From Eq.~31b!, we obtain
2ca85v8, which can be integrated leading to

v5v02ca. ~33!

Plugging Eqs.~32! and~33! into Eq.~31a!, and keeping only
the first two terms ofD, yields

~12c2!a81 1
12 a-1g~a,v0 ,c!50, ~34!

with

g~a,v0 ,c![F2FU~a,v02ca!. ~35!

Equation ~33! means a straight line in the velocity
distance characteristics~see Fig. 7!. Front solutions exist for
those values ofv0 and c for which Eq. ~33! intersects the
velocity-distance characteristic of the uniform sliding sta

FIG. 7. Schematical drawing of the velocity-distance charac
istic and the corresponding nonlinearityg.
he

-

three times. The two outside intersection points have to l
to stable uniform sliding states~characterized bya1 anda2),
whereas the inner point has to belong to an unstable unif
sliding state. This is the reason why two-domain and mu
domain solutions appear only near resonance points w
the velocity-force characteristic has a negative slope~see
Fig. 6!. Because there is no resonance fora/2p integer, we
understand why we have not found two-domain solutions
values ofa close to integer multiples of 2p.

If the requirements onv0 andc are fulfilled, the nonlinear
term g in Eq. ~34! will have three nodes and will be N
shaped~see Fig. 7!. A front solution is a heteroclinic orbit of
Eq. ~34!, which goes froma1 to a2 or vice versa. Thus we
are looking for solutions with boundary conditionsa(2`)
5a1,2 and a(`)5a2,1. A heteroclinic orbit occurs only if
the unstable manifold of the fixed pointa1,2 is the stable
manifold ofa2,1. This is possible only on a one-dimension
manifold in the parameter space ofv0 andc. Thus Eq.~27! is
justified.

To calculate the stable and unstable manifolds, we line
ize Eq.~34! around the fixed pointsa1,2. For the perturbation
da[a2a1,2 we make the ansatzda5exp(lj), which leads
to the characteristic polynomial

1
12 l31~12c2!l1]ag~a1,2!50. ~36!

Because of]ag(a1,2).0 ~see Fig. 7!, there is one negative
root l1,0. If (12c2)31(3]ag/4)2.0, the two other solu-
tions are conjugated complex with a real part that is j
2l1/2. Numerically we always found subsonic front motio
~i.e., ucu,1), leading to an unstable manifold that spirals o
of the fixed point. Thus the precursor of the front is nonosc
latory, whereas its tail is oscillatory because the partic
have inertia and therefore respond with an exponentially
creasing oscillation after an acceleration or deacceleratio

In order to verify this qualitative picture numerically, on
has to extracta andv from the data. In principle this could
be done by local fits of the dynamic Hull function, from
which we obtainw( j ,t) and subsequentlya andv. But this is
a very tedious way which is not necessary because we
only interested in the qualitative form of the shape of t
front. The following simple method is sufficient for this tas
For uniform sliding states, this leads to values ofa and v
which are identical to the exact ones. For each particle
introduce a sequence of timestn, j defined byxj (tn, j )5(2n

11)p and ẋ j (tn, j ).0. From these sequences, we obtain
following approximations forv anda:

v~ j ,t !'
2p

tn, j2tn21,j
, a~ j ,t !'v~ j ,t !~ tm, j 212tn, j !,

~37!

wheren and m are chosen in such a way that~i! tn21,j,t
,tn, j , and ~ii ! tm, j 21 is the time closest totn, j , i.e.,
utm, j 212tn, j u5minñutñ,j212tn,ju. This definition ofa is neces-
sary in order to avoid spurious values which differ from t
expected value by62p.

For a fixed value oft, one obtains a snapshot ofv anda.
The superposition of many snapshots shifted byct gives the
impression of a smooth curve~see Fig. 8!. We have tunedc
until the curves are as smooth as possible. It turned out

r-
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this method is a very accurate way to measure the front
locity c. The precursors and tails of both fronts are nonos
lating and oscillating, respectively. Furthermore, the osci
tory tail of the front on the left decays roughly two time
slower than the precursor of the front on the right. Bo
observations are in full agreement with our analytical reas
ing above.

C. Multidomain states

Starting from an arbitrary initial condition one obtain
either a uniform sliding state~if a stable one exists! or a
multidomain state, but only rarely a two-domain state. T
is especially true for large systems. It is a very general
havior of bistable spatially extended systems, at least for
initial phase of the dynamics. Different parts of the syst
establish themselves independently into one of the bist
states. It is therefore natural that several domains occur.
ter the initial formation of a multidomain state, domains m
shrink and eventually disappear on a slow time scale. T
can be understood by the fact that an attractive force betw
the fronts exists@29#. This force is caused by the overlap
the precursor, and the tail of the neighboring fronts. It can
calculated by singular perturbation theory@19,29#. In the
case of nonoscillating precursors and tails, the force
creases exponentially with distance@29#. In our case, where
the tail is oscillating, the resulting force is also oscillatin
@19,30#. Therefore, equilibrium positions are possible whe

FIG. 8. Quasicontinuum description of the two-domain solutio
The values ofv and a are obtained from formulas~37!. 20 snap-
shots taken at different times and shifted byct are superimposed in
order to obtain the details of the fronts. The value ofc is chosen in
such a way that the superimposition yields a smooth curve. The
value ofc is 0.516. The parameters are the same as in Fig. 5.
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a pair of two fronts form a bound molecule. The availab
distances between the fronts are quantized. Figure 9 sh
an example where this quantization is clearly seen. In ac
dance with Shilnikov’s theorem, such molecules are poss
only if the oscillatory tail decays slower than the nonoscil
tory one@31,32# which is indeed the case~see Sec. IV B!. As
a consequence the system shows spatial chaos.

For values of F near higher order resonances, t
velocity-distance characteristic of the uniform sliding sta
shows several resonance folds. Thus multidomain states
possible which are built up from more than two differe
domain types. All our numerical experiments have sho
that no matter how many domain types occur in the transi
at the end~i.e., in the long-time limit! only two or three
domain types survive. Furthermore, all fronts travel with t
same velocityc. There is a simple argument why more tha
three domain types are inconsistent with the last fact. C
sider the case of four different domain types witha1,a2
,a3,a4 and v1.v2.v3.v4. Between two consecutive
valuesai andai 11, there should be no additional stable sta
and only one unstable state. Thus if two such domain ty
are neighbors, the states are functionally related in ac
dance with Eq.~27!. Let us assume a sequence of doma
from right ~domain type 1! to left ~domain type 4!. Using Eq.
~27!, we obtain ai 115A(ai). This sequence is therefor
uniquely determined bya1. Now the condition that all fronts
have the same speed cannot be fulfilled because there is
one free variable but~at least! two conditions, namely,c12
5c235c34. Thus four different domain types are in contr
diction with the observation concerning the front velocitie

For F,b, domainlike solutions occur where in one d
main state the particles sit in potential wells~average particle

.

st

FIG. 9. An example of a multidomain state. The parameters
the same as in Fig. 5.
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distancea is an integer multiple of 2p, e.g.,a50) and do
not move. Such so-called traffic-jam solutions were alrea
reported by Braun and co-workers@15–17#. They mainly oc-
cur near integer values ofa/2p, where the domainlike state
discussed in this section are not possible.

V. CONCLUSION

In this paper the regular sliding states~periodic and qua-
siperiodic solutions! of the FK model are investigated fo
large chains (N.100) and for values ofg, b, and F,
where all forces in the equation of motion~1! are of the same
order.

Instead of classifying these attractors to be either perio
or quasiperiodic, a more informative distinction is wheth
their locally average particle density is uniform or not. In
periodic state the density is uniform because all partic
perform the same motion, only shifted in time. The moti
of the whole chain is completely determined by a sin
periodic function, the dynamical hull function. The velocit
force characteristics of the periodic attractors show peak
certain values of the velocity. These peaks are caused
resonances of the ‘‘washboard’’ wave. In the frame of t
center of mass of the chain, the external potential can be
as a wave~washboard wave! with wave numbera ~which is
the inverse average particle density! and frequencyv ~which
is the average sliding velocity!. Resonances occur for thos
values ofv wheren washboard waves are able to decay in
a phonon@wave numberk, frequencyv(k)# in accordance
with ‘‘momentum’’ and ‘‘energy’’ conservation@i.e., k
5na and v(k)5nv#. A similar process with a decay int
two phonons~parametric resonance! explains why the uni-
form sliding state may be unstable even though the differ
tial mobility is positive.

Quasiperiodic states emerge from instabilities of unifo
sliding states. They are characterized by domains of diffe
average particle densities. In each domain the average
ticle velocity is uniform andnonzero. The walls between
neighboring domains all move with the same velocity. T
domain-wall or front velocity is different from the velocit
of the center of mass. Thus each particle goes through
domains. In a quasiperiodic attractor, not more than th
different domain types are possible. For chains close to
most commensurate case~i.e., a is an integer multiple of
2p) the average particle velocity is zero in one domain.
this so-called traffic-jam state@15# the particles alternately
switch between stationarity and sliding. Because the traf
jam state exists for also finite temperatures@15,17#, states
with different sliding domains will presumably survive finit
temperatures.

In this paper we have developed a quasicontinuum
scription of the FK model on the basis of slowly varyin
locally averaged inverse densitya and velocityv. That is,a
andv slowly depend on the particle indexj and the timet. A
set of partial differential equations@Eqs. ~31!# governs the
dynamics of the variables~assumingj to be a continuous
space variable!. It is not possible to solve these partial di
ferential equations analytically. But it is quite helpful to u
derstand~i! why the FK model organizes itself into domain
like states with domain states which are not determined fr
outside,~ii ! why there are not more than three different d
y
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main types,~iii ! why the size of the domains is quantize
~iv! why states with several domains of the same type
possible,~v! why a multidomain state can be seen as
example of spatial chaos, and~vi! why for a fixed value of
the external forceF the number of stable states increas
exponentially withN. The huge number of stable states lea
to multihysteretic behavior like in a ferromagnet, where t
position in the velocity-force characteristic strongly depen
on the history.

The phenomenon of domainlike states, where each
main is characterized by a spatially periodic but station
solution, has already been found in hydrodynamical patt
formation ~Taylor-Couette@33# and Rayleigh-Be´nard @34#
system!. Theoretically this behavior has been modeled
nonlinear phase equations@19,35,36#. In our case the domain
states are periodic in space and time; they are trave
waves.

In experiments where locally resolved measurements
not possible, the most important consequence of the dom
like sliding states are~i! quasiperiodicity in the time signal
like the velocity of the center of mass,~ii ! flattening of the
resonance peaks~see Fig. 6!, and~iii ! multihysteretic behav-
ior. Many of these features should disappear for small val
of N if they are caused by domainlike states. Because
inertia term is important for these states, we do not expe
in CDW systems. In adsorbate layers and ionic conduc
the appearance of such states should be possible, but it
be difficult to drive themuniformly and to measure the
velocity-force characteristic. The ideal systems to check
theory are Josephson-junction arrays, because the force
the velocity correspond to the driving current and the vo
age, respectively. Furthermore, the damping constantg and
the number of junctionsN can be chosen by the fabricatio
process. The average distancea52pM /N is also easily ac-
cessible, because the numberM of flux quanta can be chose
by the initial preparation of the system. Thus for rings
more than 50 Josephson junctions we predict the occurre
of domainlike sliding states.
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APPENDIX A: NUMERICAL AND ANALYTICAL
APPROXIMATIONS OF THE HULL-FUNCTION

EQUATION „9…

In this appendix we describe the numerical scheme
have used to solve the differential delay equation~9! for the
dynamic hull function f (w). In the simplest case, thi
scheme also leads to a nonlinear analytical approximatio

Because of Eqs.~8! and~10!, we expand the dynamic hul
function f into a Fourier series

f ~w!5 (
m51

`

f meimw1c.c. ~A1!

In the numerical approximation we replace this infinite ser
by a finite one with a cutoffM , i.e.,(m51

` →(m51
M . Plugging
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this ansatz into the differential delay equation~9! leads to a
set of nonlinear algebraic equations for the coefficie
$ f 1 , f 2 , . . . ,f m , . . . %:

@~mv !22v2~ma!2 igmv# f m5bIm~ f 1 , f 2 , . . . ,f j , . . . !,
~A2!

wherev(k) is the phonon dispersion relation~14!, and

I m~ f 1 , f 2 , . . . ,f j , . . . ![
1

2pE0

2p

sin@w1 f ~w!#e2 imwdw.

~A3!

The driving forceF does not appear in the set of equatio
~A2!. That is, we first obtain a solution of Eq.~A2! for a
given value ofv. After that, we obtain the correspondin
value ofF by using Eq.~12!, i.e.,

F5gvS 112 (
m51

`

m2u f mu2D . ~A4!

In the numerical approximation, we solve the set ofM
algebraic equations~A2! with the Newton method. The mos
time-consuming part of the computation is the calculation
I m . In order to speed up the computation we restrict o
selves to values of the cutoffM which are powers of 2. Now
we are able to calculate$I 1 , . . . ,I M% from $ f 1 , . . . ,f M% by
two fast Fourier transformations~FFT’s!. The first one is an
inverse FFT which calculates the hull function in real spa
Next we calculate sin@w1f(w)#. The second FFT yields
$I 1 , . . . ,I M%.

In order to obtain reliable results, the value of the cut
M has to be chosen carefully. Due to the FFT the hull fu
tion is approximated on a lattice with lattice constantp/M .
Because of Eq.~7!, this corresponds to a time resolutio
Dt5p/(vM ) of xj (t). The fastest time scale in the system
given by 2p divided by the maximum phonon frequenc
which is 2 in accordance with Eq.~14!. Assuming that the
fastest time scale has to be resolved at least by two stepsDt,
we obtain reliable results only if

v*
2

M
. ~A5!

All results reported in this paper are obtained forM532.
Thusv has to be larger than 0.06.

For M51, we obtain an analytic result parametrized
the modulus off 1. We write

f 15
A

2
eic. ~A6!

Due to the integral representation of the Bessel function
the first kind, we can obtainI 1( f 1). Together with Eq.~A2!,
we obtain

@v22w2~a!#A5b@J2~A!2J0~A!#sin c, ~A7!

gvA5b@J2~A!1J0~A!#cosc. ~A8!

The elimination ofc leads to polynomial of second order
v2. Thus we obtain an analytic solution parametrized byA:
s

f
-

.

f
-

of

v~A!5S v2~a!2
g̃2

2
6Ag̃4

4
2v2~a!g̃21S b̃

A
D 2D 1/2

,

~A9a!

with

g̃[
J0~A!2J2~A!

J0~A!1J2~A!
g ~A9b!

and

b̃[@J0~A!2J2~A!#b. ~A9c!

Using Eq.~A4!, we obtain

F~A!5gv~A!S 11
A2

2 D . ~A9d!

APPENDIX B: LINEAR STABILITY ANALYSIS
OF THE UNIFORM SLIDING STATE

In this appendix we explain our procedure to calcula
numerically the stability of the uniform sliding state. Furthe
more, we derive an approximation forvc .

Plugging the Floquet-Bloch ansatz~19! into the linearized
equation of motion~18! leads to

v2ck9~w!1~2lk1g!vck8~w!1~lk
21lkg!ck~w!

5ck~w2a!e2
2p i
N k1ck~w1a!e

2p i
N k22ck~w!

2b cos@w1 f ~w!#ck~w!. ~B1!

The Fourier ansatz

ck~w!5 (
m50

`

ck,meimw1c.c. ~B2!

turns this equation into a set of infinitely many linear equ
tions:

Fv2S ma1
2pk

N D1~lk1 imv !21g~lk1 imv !Gck,m

52b (
m850

`

~Km2m8ck,m81Km1m8ck,m8
* !, ~B3!

where

Km[
1

2pE0

2p

cos@w1 f ~w!#e2 imwdw. ~B4!

Again we have to choose a cutoffM 8 to solve this set
numerically. In order to be consistent with the cutoffM
532 of the Fourier expansion of the hull functionf we have
chosenM 8515. Because of Eq.~19!, the stability depends
on the numberN of particles. For largeN the eigenvalueslk
lead to a continuous functionl(2pk/N). Since we are
mainly interested in large systems (N.50), we have chosen
N5100. It is difficult to check numerically whether the un
form sliding state is stable or not because of the Goldst
model050. Our numerically obtained value ofl0 fluctu-
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ates around zero because of unavoidable errors. There
our instability criterion reads as follows: The uniform slidin
state is unstable if at least one eigenvalue is larger than 0
This value is considerably larger than the amplitude of
numerical fluctuations ofl0.

We are able to obtain an analytical approximation of
largest sliding velocityvc at which parametric resonance
just able to destabilize the uniform sliding state. We do t
for zero damping because physical intuition tells us thatvc
decreases monotonically withg. In fact, for g!1 and b
5O(g0), the largest sliding velocity is the undamped o
minus a correction term of orderg. The approximation
makes three assumptions:~i! Parametric resonance atvc oc-
curs for that value ofq which maximizesv1

P(q). For 0<a
<p this impliesq5p. ~ii ! All Fourier coefficients ofck are
zero exceptck,0 and ck,1 . ~iii ! The integralsKm are calcu-
lated only in leading order ofb, which yields

Km'
1

2pE0

2p

cos~w!e2 imwdw5
d1,m1d21,m

2
, ~B5!
a
ie
ils

.

n

s.
re,

5.
e

e

s

wheredn,m is the Kronecker symbol. Withg50 and these
assumptions, Eq.~B3! reduces to

S v0
21l2 b/2

b/2 v0
21~l1 iv !2D S ck,0

ck,1
D 5S 0

0D , ~B6!

where

v0[v~k!5v~a1k!5v~a/26p!52 cosS a

4D . ~B7!

A nontrivial solution of Eq.~B6! implies a zero determinan
leading to a characteristic polynomial of second order inl
1 iv/2)2. Solutions with a nonzero real part ofl occur only
if ( v0

22v2/4)2,b2/4. Therefore we obtain Eq.~21!.
q.
t
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