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Driven Frenkel-Kontorova model. I. Uniform sliding states and dynamical domains
of different particle densities

Torsten Strunz and Franz-Josef Elmer
Institut fir Physik, Universita Basel, CH-4056 Basel, Switzerland
(Received 4 September 1997; revised manuscript received 5 February 1998

The dynamical behavior of a harmonic chain in a spatially periodic poteffirahkel-Kontorova model,
discrete sine-Gordon equatjomnder the influence of an external force and a velocity proportional damping is
investigated. We do this at zero temperature for long chains in a regime where inertia and damping as well as
the nearest-neighbor interaction and the potential are of the same order. There are two types of regular sliding
states: uniform sliding states, which are periodic solutions where all particles perform the same motion shifted
in time; and nonuniform sliding states, which are quasiperiodic solutions where the system forms patterns of
domains of different uniform sliding states. We discuss the properties of this kind of pattern formation, and
derive equations of motion for the slowly varying average particle density and velocity. To observe these
dynamical domains, we suggest experiments with a discrete ring of at least 50 Josephson junctions.
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|. INTRODUCTION M

a=27TN. (3)
Sixty years ago, Frenkel and Kontorova introduced a

simple model which has become popular in many fields of . . .

solig-state physics and nonlinearpd?/nam[dﬂ. Thgy in. Due to symmetriesa can be restricted ta e[ 0,7] without

vented their model in order to describe the motion of a dis-los_?_hOf %eneral_lty.l behavi f the FK del h read

location in a crysta[2]. Meanwhile, the Frenkel-Kontorova € dynamical behavior of the model has already

(FK) model has become also a model for an adsorbate |ayé3reen"stud|ed in several limitgi) in the overdamped limit

on the surface of a cryst&B,4], for ionic conductorg5,6), ~ (i-€.,X; can be neglectgdor largeN [8,11]; (ii) in the limit

for glassy material§5,4,7], for charge-density-waveCDW)  of zero damping and driving.e., y=F=0) for a/2m near

transport [8], for chains of coupled Josephson junctionsinteger values, allowing well separated Xinks[12] as well

[8,9], and for sliding friction[10]. as for the most incommensurate valiie., the golden mean
The FK model is a chain of particles with masscoupled ~ of @/27 [13]; and (iii) in the underdamped case for small

by a harmonic nearest-neighbor interaction with stiffness N (N<10) [9,14]. In a series of papers, Braun and co-

It is under the influence of an external spatially periodic po-workers recently studied recently the underdamped dynamics

tential with periodicityc and strengtiJ,. Here we study the Of a generalized FK model witN>100 buta near zero and

nonequilibrium behavior of the FK model driven by a force 7 [15-17.

F. We assume energy dissipation due to a usual damping In this series of two papers, we study the underdamped
force with a damping constanf. After rescaling time and K model for large numbers of particlése., N>100). We

space, one obtains the following equation of motion in di-do n_ot restrict ourselves to values a_uwa near _mteger or
mensionless units: half integer values where the dynamical behavior can be de-

scribed in terms of kinks. The system has stationary, peri-
odic, quasiperiodic, and chaotic solutions. Of special interest
is the transition from stationarity to sliding, the so-called
'>'(J.+ 75<j=Xj—1+Xj+1—2Xj—b sinx;+F, (1) pinning-depinning transitionand the backward process. In
the first paper, we investigate the periodic and quasiperiodic
_ . ) . solutions. The second paper will be concerned with the
where y= 7l\km, b=(2m/c)?Uo/x, and F=(2n/ depinning-pinning transition between stationary states and
c)F/«. The time and space units ak@n/x andc/2m, re-  spatiotemporal chaos. Preliminary results have already been
spectively. We assume periodic boundary conditions, i.e., published in a conference proceedifds].
In Sec. IV, we will see that the FK model spontaneously
forms spatial-temporal patterns as many other spatially ex-
@) tended systems driven far from equilibriyr9]. These pat-
terns are caused by the bistability and instability of timé
form sliding state In the uniform sliding state all particles
where N is the number of particles andl is an arbitrary perform exactly the same regular and periodic motion. Dif-
integer. Note that the periodic boundary condition impliesferent particles differ only in the phase of this motion. The
that the average particle densityalis constant, i.e., phase difference of two neighboring particles is the same

XJ'+N:X]'+27TM,
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everywhere. That is, the density of particles is on averag&his formula assumes that the average acceleration of the
constant along the chain. The uniform sliding state is thechain is zero. The other relationship can be derived from the
only nonstationary state in the overdamped lifi2if] but it  fact that the energy released during sliding has to be dissi-
has also be studied in the underdamped ¢asl]. pated totally, i.e.,

The discreteness of the chain leads to seversnances
in the underdamped [imi{t9,14,21,22 The consequence is
bistability. For spatially extended bistable systems it is well 1,11 N
known that domainlike patterns are possifl8]. In the FK Fo=ylim ?f N > x7dt.
model these domains can be characterized by the average Toe 1J0 IS
particle density H and the average particle velocity We
find that states with two or three different types of domains
survive in the long-time limit. The number and the width of
the domains can vary, leading to a quite large number of
possible solutions. Because of different average velocities in
different domain types, the motion in the domain solutions is
quasiperiodic. Assuming that and v are slowly varying

functions in time and space, we derive an approximate equarhs result clearly shows that in the case of no dissipation
tion of motion for them. W|th_|ts help we u_nder_sta_nd why the (i.e.,y=0) the chain may slide without any applied force. In
domains do not disappear in the long-time limit, and whygec ‘i1 B, we will discuss the condition of this possibility.

there are not more than three dif_ferent doma.in types. F“rthe‘Equation(G) also shows that the mobility/F is always less
more, it turns out that the state in the long-time limit can bethan or equal to ¥, i.e., the mobility in the limitb— 0.

understood as a spatially chaotic solution of a corresponding
dynamical system. A special variant of these domain solu-
tions is thetraffic-jam statewhere the particle velocity in one
domain is zerd15—17. lll. UNIFORM SLIDING

The paper is organized as follows: In Sec. Il, we derive pgecause of the symmetries of the equation of motion,
two t_different but mathematically equivalent fo_rmulas for_thethere exist nonstationary solutions callegiform sliding
relation between the forde and the average sliding velocity states They are characterized by the fact that every particle

statg and its stability are discussed. The domainlike State%jﬂ(t):xj(HTl), forj=1, ... N. Thus we need only one

are investigated in Sec. IV. In Sec. V, the main part of thegnction, thedynamic hull function fto describe the motion
paper concludes with some remarks concerning possible eyt || particles[21,11,8,9:

perimental observations of these domainlike states and simi-

larities to other pattern forming systems. The appendixes de-

scribe our numerical and analytical scheme to obtain the Xi(t)=y+aj+ovt+f(p+aj+ot), 7
uniform sliding state and to analyze its stability. J

Using Eq.(4), we obtain

- e Ny )
F=yv|1+ lim ?JONE (;—1) dt]. (6)

T—o =1

wherev is the average sliding velocity anéis an arbitrary

phase. Because of the discrete translation symmetry of Eq.
Il. AVERAGE SLIDING VELOCITY AND EFFECTIVE (1), the Hull function is periodic, i.e.,

FRICTION FORCE

The average sliding velocity of the chain reads

fle+2m)=1(p). ®
111 N Plugging ansat£7) into the equation motiofil) leads to a
v=Ilim Tf N E x;dt. (4) differential delay equation for the hull functidi{¢):
T—o 0 j=l
Plotting the measur_ed or calculated vaIu_es; dbr different 02" (@) + y[1+F (o) ]=f(o+a)+f(o—a)—2f(e)
values of the applied forc&, one obtains the so-called
velocity-force  characteristic In CDW systems and —b siMe+f(@)]+F. 9

Josephson-junction arrays, it corresponds to the current-

voltage and voltage-current characteristics, respectively. IiThe average sliding velocity has to be chosen in such a

the context of frictionF can be interpreted as the effective way that a 2r-periodic function fulfills Eq.(9). If f(¢) is a

kinetic friction as a function of the sliding velocity. solution, thenf (e + ) + ¢ is also a solution. We make the
There are two mathematically equivalent relationships bedefinition of the dynamic hull function unique by restricting

tweenF andv. The first one can be obtained by taking thethe solutions of Eq(9) to 2#-periodic functions with zero

time average of the sum of E¢L) over all particles: average, i.e.,

F=yu+li EITE§ in x; (t)dt 5 o
=yt lim < oN & sin x;(t)dt. (5 fo f(@)de=0. (10

T—oo
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FIG. 1. The dynamic hull functiori(¢). The inset shows the 5
corresponding particle position as a function of time. The param- '/24 A
eters area/2r=(3—+5)/2, b=2, v=0.75, andy=0.5. Be- 3
cause the solution is obtained by the method described in Appendix 0 - 5
A, the average sliding velocity is prescribed. The corresponding ' ! ! '
value of F is approximately 0.74. 0.0 0.5 1’O|__ 1.5 2.0
For the uniform sliding staté9), the relationships5) and FIG. 2. Velocity-force characteristic of the uniform sliding state
(6) betweerw andF reduce to (7). Solid (dotted lines indicate stabléunstablé¢ solutions. Dashed

and dashed-dotted lines in the inset denote analytically obtained
approximations given by Eq$l5) and(A9), respectively. The pa-

b (27 rameters area/2w=(3—5)/2, y=0.5, andb=1 (left curve
F=yv+ Zfo sife+f(e)]lde (12) andb=2 (right curve and ins¢t The arrows denote the resonant
values ofv given by Eq.(16). The numbers indicate the order
and
1 (2 the velocity of the center of mass divided by the period of
F= 1+ — £/ 240 |, 12 _the potential. R(_asonance occurs if the washbqard frequency
Lid 2mJo [Fle)lde (12 is equal to the eigenfrequency of the phonon with wave num-
' berk=a. To see this, we solve E9) in the approximation
respectively. sif ¢+ f(¢)]~ sin ¢. We obtain
Instead of solving Eq(9) for a given value off, it is
more convenient to replade by Eq.(11) or (12) and solve ib/2 :
Eq. (9) for a given value ofy. From the solutiorf(¢) one f(¢)~—————¢€“+cc, (13

2 2
obtains the corresponding. In the overdamped limit, it is w (@) =v iy

well known thatF is a monotonically increasing function of . ) . )
v [20,8]. In the underdamped casesonancedead to non- Wherew(k) is the phonon dispersion relation
monotonic velocity-force characteristif33].
k
sm( 2)
We solve the hull-function equatiof®) numerically by
expandingf into a Fourier series. The details are describedn order to obtain the corresponding valuefgfone can use
in Appendix A. Figure 1 shows an example of a dynamiceither Eq.(11) or Eg. (12). Although both equations are
Hull function. equivalent, for the approximatiofl3) we obtain different
In the underdamped case the numerically obtainedesults. Evaluating Eq(11) leads to the obviously wrong
velocity-force characteristics exhibits clearly peaks, as cafiesultF=yv. This can be understood from the fact that Eq.
be seen in Fig. 2. Near these peaks an increase of the drivig3 is only the leading term of an expansion of the hull
force F by a considerable amount leads only to a slight in-function in powers ofb. Thus F=yv +0O(b?). Instead of
crease of the average velocity In other words, the differ- ~calculating the next order ih, one can use Eq12), which

ential mobility dv/dF is much lower than the mobility with- leads to
out any periodic potentiali.e., 1/). The reason for this

w(k)=2 . (149

A. Resonances

behavior is that the additional energy is only partially turned b2/2

into a larger kinetic energy of the center of mass of the chain, F=9v 5 YT Oo(b"|. (15
i i i i i [w(a)—ve]“+ yv

whereas the main part is turned into oscillatory motion of the

particle due to resonances.

In the frame of the center of mass which moves withNote thatF has to be an even function & because the
average sliding velocity, the external potential leads to a external potentiab cosx is an odd function ok— #/2. For
time-periodic force acting on the particle. The frequency oflarge values ofv, Eq. (13) approaches zero, and therefore
this force, the so-called “washboard frequency,” is given byF— yv. That is, if the washboard slides very fast, the par-
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ticles cannot follow the swift pushing by the washboard.Ustinov, Cirillo, and Malomed also observed resonance lines
Thus the chain slides like a rigid solid. We call this state thein numerical simulations of the damped and driven FK
solid-sliding state model [14]. Van der Zantet al. reported evidence of these

Figure 2 shows that for large valuestofor small values resonances in experiments with a ring of eight Josephson
of y) the simple approximation(15) overestimates the junctions[24].
strength of the resonance line. That is, there is an effective The authors of Refs[14] and [24] explained the reso-
damping, larger thary, which increases with increasing os- nances found by the following mechanism, which leads to
cillation amplitude. This larger damping can be understoodEq. (17). The mechanism relies on the assumption that 2
by phonon coupling due to the nonlinearity in the equation ofkinks travel in the ring. Most of the time the particles are in
motion. This coupling opens up additional channels for ena potential well. When a kink travels through a particle, it
ergy dissipation yielding a higher effective damping con-jumps into the neighboring well and oscillates. Because of
stant. The inset of Fig. 2 shows that a remarkably good apthe periodic boundary conditions the jumps occur in equidis-
proximation of these additional dissipation processes is givetant time steps. The distance between two kinks in terms of
by the Galerkin approximatiofi(¢)=A cos(p+ ). Project- the number of particles in between is given B/M
ing the hull-function equatiort9) together with this ansatz =2m/a. The kink velocityc is related to the average sliding
onto sing and cosp leads to two transcendental equationsvelocity v by v =ac. Superharmonic resonances of order
for A and . After elimination of, one can parametrize the occur if the time interval between two jumps, i.e.,
velocity-force characteristic by the amplitude [see Eq. (N/M)/c=2mx/v, is n times the oscillation time of the par-
(A9) in Appendix Al. ticles, i.e., 2rn/w(k), wherey(k) given by Eq.(17), is the

In order to understand the other resonance peaks seen dfispersion relation of the linearized equation of motian
Fig. 2, one has to keep in mind that the external potential nothe wave numbek times the distancdl/M has to be 2n,
only leads to a periodic driving force, but also to a modula-that is, k=an. According to this mechanism the superhar-
tion of the eigenfrequencies. Thus parametric process&ponic resonance condition is therefore ELj). This picture
make it possible to excite other phonons. In the frameworks valid only if the distance between two kinks, i.&//M
of a perturbation theory witlh as the smallness parameter, =2/a, is much larger than 1. That is, the motion can be
the elementary processes corresponding to these resonanggscribed by kinks only i/27 is near an integer value.
lines are the decay of “washboard waves’(wave number  Thys we expect that Eq16) is valid fora=0(1), and Eq.
a, frequencyv) into a single phonon with wave numbkr  (17) for a<1. For example, the numerically obtained values
and frequencyn(k). Assuming momentum and energy con- of positions of the resonance peaks reported by Wataatbe

servation, one obtaink=na andv=v,, whereuv, is the 3| [9] are closer to Eq(16) than to Eq.(17) because>1.
superharmonic resonandesquency of orden:

B. Instabilities
_o(na)

Un= n

(16 In order to discuss the instability of the uniform sliding
state(7), one has to investigate the dynamics of small per-

. . . turbationséx; . They are governed by the equation of motion
The positions of the first few resonances are shown in Flgfl) linearized around Eq(7):

2. The agreement with the actual positions of the resonance

peaks is quite good. Near the superharmonic resonance of 5;(j+75;(j:5)(j_1+ X[ 41— 20X,

order n, the nth Fourier mode of the hull function has a

maximum. For example, the square in Fig. 2 corresponds to —b codaj+out+f(aj+ovt)]ox;. (18

the hull function in Fig. 1, which is clearly dominated by

exp(d¢). Because of finite dissipation, superharmonic reso-The periodic boundary condition2) turns into ox;.y
nances of higher order may be hidden behind a nearby resa= 6X; . In accordance with the Floquet-Bloch theorem, one
nance of lesser order such as, e.g., the fourth resonance N write any solution of this equation as a sum of solutions

Fig. 2. of the form
The superharmonic resonance has been already investi- ) (2mINDK]+ At
gated in the literature, experimentallg4] as well as theo- oxj(t)=cy(ajt+vt)e <, k=1,...N

retically [12,14,21,22 The superharmonic resonance condi- (19

tion (16) was observed first in numerical experiments by
Aubry and de SezE21,22. They studied the FK model with-
out damping but with a very small driving force. They found
that the velocity of the center of mass did not increase lin
early in time but it was locked for finite time intervals at
velocities given by Eq(16). They also studied the under-
damped and driven FK mod¢R1]. Peyrard and Kruskal
found the same locking phenomenon for the velocity ofma 2
kink [12]. In this case the resonance frequencies are given b

where ¢ (¢) is a 27 periodic function, and\, is the so-
called Floquet exponent. The uniform sliding state is stable if
the real part of\, is negative for all values ok. There is
always a solution with,=0. It is the Goldstone modéX;
=dxj=v+vf'(aj+vt)=cy(aj+uvt), which follows di-
rectly from differentiating Eq(9). Appendix B describes the
scheme we used to solve E(L8) numerically with the
loquet-Bloch ansat#l9). The dotted lines in Fig. 2 denote
nstable parts of the velocity-force characteristics.
a(na) Two different mechanisms may lead to an instability of
~ _ w(ha . ~ N T the uniform sliding state. The first onenggative differential
with (k)= Vb + w%(k). (17 mobility, i.e., a negative slope in the velocity-force charac-
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140+ - different in each domain. One can say that the domains are
; characterized by different particle densitiea.INeighboring
domains are separated by domain wéitents) of finite size.

100 Conservation of the number of particles implies that a front
has to move with a velocity

120

v —avy
Ufront= az_al_. (22
where the average particle distance and the average particle
velocity of each domain type is given &, , andv, ,, re-
100 200 spectively. From the viewpoint of the particles, we can ex-
x—qj press the front velocity in terms of how fast the front travels

from one particle to the next. It is given by
FIG. 3. Dynamical domains of different particle densities. A

series of snapshots taken at equidistant time stéps 2#/v) are U1—Uy

shown. Each dot denotes the position of a particle. A particular c= a,—a; (23

zigzag shaped snapshot is highlighted. The zigs and zags corre-

spond to two different kinds of domains that are characterized byBecause Eqg22) and(23) are symmetric in the exchange of

uniform sliding. The parameters ar®l=144, M=55, b  the indices, all fronts propagate with the same velocity, leav-

=2, y=05, andF=028. ing the widths of the domains constant. The numiéys of
particles in each type of domain fulfill the constraints

teristic. A small positive velocity fluctuation—v + dv ac-
celerates the chain because the applied force is larger than  N;+N,=N and a;N;+a,N,=27M=aN. (24)
the force necessary to keep the new velogitySv constant.

The second type of instabilities is caused ggrametric ~ Because of 8N; ,<N, the particle density for one type of
resonanceln the framework of the multiphonon process, it the domains is larger thandl,/whereas for the other type it is
corresponds to the decay of washboard waves into two less than H. In the following the type with the larger den-
phonons with wave numbema/2+q. A parametric reso- Sity will be number 1. Thus
nance of orden can be expected for values of the average

sliding velocityv, which are given by a<a<a,. (25
o w(nal2+q)+ o(na/2—q) The average sliding velocity of a domain state is given by
vo(qQ)= . (20)
n UlN1+UzN2
=N (26)

Because parametric resonance is a threshold phenomenon,
the amplitudeb of the washboard wave has to exceed a A gomain-type state is in general a quasiperiodic motion

-y - - . 1/ . -
critical value which is proportional to/™" [19,28. This is  yith three frequencies:; anduv, from the periodic motion

true only for values ot between the minimum and maxi- i, each domain type; andm/N from the cyclic motion of
mum of Eq.(20). For velocities outside this interval paramet- e fronts through the system.

ric resonance is still possible, but the threshold increases. For
zero damping the uniform sliding state is unstable for any

. o L A. Two-domain state
value ofv below a certain critical value ., which is ap-

proximately calculated in Appendix B: To understand this kind of pattern formation we investi-
gate two-domain states in detail. First, we have to discuss the
/ a relationship between the average sliding veloeitand the
ve~\/16 cos Z) +2b. (21) average particle distaneefor the uniform sliding state at a

fixed value ofF, i.e., thevelocity-distance characteristié
The actual value of . obtained from the numerical stability typical example is shown in Fig.(d. As in the velocity-
analysis agrees very well with this formula even for largeforce characteristic, resonances are responsible for folds.

values ofb. The numerical value of.; is less than Eq(21), A two-domain state is completely characterized by two
but deviates not more than 10% for 4. points on the stable branches of the velocity-distance char-

acteristic which fulfill Eq.(25). The velocityc of the front is

the slope of the line connecting both poirisge Fig. 7. The
sizes of the domains are determined by the solutions of Eq.

Near resonance peaks, the system is bistable and h&24).

therefore the opportunity to organize itself imlomainsof From this consideration, one would expect a continuous
different uniform sliding states. Figure 3 shows a typicalfamily of two-domain states parametrized by two real num-
example with ten domains. There are only two types of dobers. But this is not the case, as Fig. 5 clearly shows. In our
mains. Each domain is characterized by uniform sliding.numerical simulations we always found that the system dy-
That is, in each domain the particle motion is given by Eqg.namically selects the same pair of points on the velocity-
(7), but the Hull functionf and the value ofi andv are distance characteristic. This is true everaifs changed as

IV. SLIDING DOMAINS



TORSTEN STRUNZ AND FRANZ-JOSEF ELMER

),

1606 PRE 58

1.6 1
1.4 1
1.2 4
1.0 4
0.81
0.6
0.4 .4

0.2 T T T T T T
02040608 10 12 14

,__

FIG. 6. Velocity-force characteristics for the uniform sliding
FIG. 4. (a) The velocity-distance characteristic for the uniform states and the two-domain states. Thithin) lines denote two-

sliding states. Soliddotted lines indicate stabléunstablg states.  domain(uniform sliding states. Soliddotted lines indicate stable

The dash-dotted horizontéilted) line denotesy=F/y (the main  (unstablg solutions. The parameters ake=2584, M =987, b

>
0.9
0.81
0.7 1

0.0

0.0 05 10 15
[ON

0.6 I
0.0 0.5 1.0 1.5 2.0
d

resonance ;). The open(filled) squares denote the initiégfinal) =2, andy=0.5.
domain states of the simulation shown in Fig.(B) The numeri- ' o
cally obtained values of the average particle distamgdsehind the ~ betweenc, a;, anda;. This behavior fits into the general

front for a given value; in front of the front. Those data points are picture of front propagation in bistable systeft8] (see also
connected by a solid line where a continuous function is expectedSec. 1V B). If we know function A, we can calculate the
The dotted line denotes the inverse function. The circle near thealues ofa; anda, by solvingA~1(a)=A(a) [see also Fig.

intersection of both functions denotes the valueaoénda, of the
numerically found two-domain solution. The parameters bre
=0.5, y=0.5, andF=0.6.

long asae(a;,a,). How does the system select a certain
pair of values fora, ,? A careful inspection of Fig. 5 reveals

that behind the fronts new domain states are selected. Theg

states are independent of the initial states. The interface b
tween the new domain state and the old one does not form
front. It smears out, and in the long-time limit the domain

4(b)]. Note that the values cd; anda, are in general irra-
tional [26]. The value ofa determines only the sizes of the
domains. Whether the chain is commensurate or incommen-
surate is irrelevant. But numerically we have never found
such states for values af near integer multiples of 2.

The selected values @f; anda, are of course functions
f the applied forceF. Figure 6 shows the velocity-force
haracteristic of the two-domain states. By varyfghey
sappear due to two reasons. First, one of the domains

shrinks to zero, and the velocity-force characteristics of the
two-domain state and uniform sliding state come together.
Seconda; or a, may move onto an unstable branch of the

velocity-distance characteristic. Thus the two-domain state
still exists but it has become unstable. In Fig. 6, the velocity-
force characteristic of this unstable two-domain state is de-
noted schematically by dotted extensions.

states approach to uniform densities with well-defined value
of a. Numerical experiments show that the statebehind
the front is uniquely defined by the stade in front of the
front [see Fig. 4b)]. Hence there is functional relation be-
tween them:

ar=A(a). (27)

Together with Eq(23), we have a uniquely defined relation B. Quasicontinuum description of the front

We have seen that the state of the domains can be de-

250 ' T Ees
///f / j‘( scribed by Eq(7). They are characterized ka4 , andv ,.
200 4 /// i L To describe the fronts in the same way, we assumestiaat
// ’/ ! v are continuous functions which are varying slowly in space
150 - / L and time. The space coordinate is the particle inflext
— becomes a real variable in a quasicontinuum description.
1004 / | Thus we writex;(t)=x(j,t). The discrete Laplacian;,,
+X;_1—2x; can be written as an infinite series of differen-
50 ‘ { i tial operators, i.e.,
S »/f —oxt1=4 sinfl Za: 1x(i
0 , { : Xj+1(D) +X;_1(t) = 2%(t) =4 sint? 595 |X(j.1). (28)
-100 0 100 200 300
x;—qj

We generalize the ansdf?) by assuming thap is a function
FIG. 5. Snapshots of the evolution of a two-domain state takerpf j andt, i.e.,
at equidistant time stepa\(=12). The presentation is the same as
in Fig. 3. The initial state is a two-domain state wih=27/100
and a,=2/5. The initial positions and velocities of the particles
are calculated by using Eq7). The parameters afd=250, M
=25, b=0.5, y=0.5 andF=0.6.

x(1.,O=e(j,) +f(e(j,1), fle+2m)=f(e), (29

where f is the solution of the Hull function equatiof®).
Now we define local values & andv by
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three times. The two outside intersection points have to lead
to stable uniform sliding statésharacterized by, anda,),
whereas the inner point has to belong to an unstable uniform
sliding state. This is the reason why two-domain and multi-
domain solutions appear only near resonance points where
the velocity-force characteristic has a negative sl¢pee

Fig. 6). Because there is no resonance &2 integer, we
understand why we have not found two-domain solutions for
values ofa close to integer multiples of 2.

If the requirements ony andc are fulfilled, the nonlinear
term g in Eg. (34) will have three nodes and will be N
shapedsee Fig. 7. A front solution is a heteroclinic orbit of
Eqg. (34), which goes froma, to a, or vice versa. Thus we
are looking for solutions with boundary conditioag— «)
=a,;, anda(«)=a,;. A heteroclinic orbit occurs only if

FIG. 7. Schematical drawing of the velocity-distance characterthe unstable manifold of the fixed poiat, , is the stable

istic and the corresponding nonlineargy manifold ofa, ;. This is possible only on a one-dimensional
manifold in the parameter spacewgf andc. Thus Eq.(27) is
a=djp, and v=ode. (30)  Justified.

To calculate the stable and unstable manifolds, we linear-
Plugging the ansat®9) into the equation of motiofil) and  ize Eq.(34) around the fixed pointa, ,. For the perturbation
averaging over the phasg we obtain da=a—a;, we make the ansatZa=exp(\j), which leads
to the characteristic polynomial

(?tU:D((?j)aja'f'F_Fu(a,U), (3169
A3+ (1—c?)N+d,0(a10)=0. (36)
0ta=&jv, (31b)
Because ob,g(a; ») >0 (see Fig. ¥, there is one negative
where root A;<0. If (1—c?)3+(309,9/4)>>0, the two other solu-
inhx/2\ 2 2 tions are conjugated complex with a real part that is just
X E(sm_x) = X_+O(X4) (319  —Mi/2. Numerically we always found subsonic front motion
/2 12 ’ (i.e.,|c|<1), leading to an unstable manifold that spirals out

. . . . of the fixed point. Thus the precursor of the front is nonoscil-
andFU_(a_,v) is the yelomty-force charact_er|st|c Of the uni- latory, whereas its tail is oscillatory because the particles
form sliding state given by Eq11). Equation(318 is only a6 jnertia and therefore respond with an exponentially de-
approximately correct because we have assumed that tl?:‘?easing oscillation after an acceleration or deacceleration.

Hull function f does not depend oa andv. Furthermore, In order to verify this qualitative picture numerically, one
the ansatZ29) cannot be exact in a front. Nevertheless, thehas to extrack andv from the data. In principle this could

approximation(31) is correct in leading order of a multiple- be done by local fits of the dynamic Hull function, from

scale perturbation theof27,28. . which we obtaing(j,t) and subsequently andv. But this is
In general, Eq(31) cannot be solved analytically. Butwe  yary tedious way which is not necessary because we are

are able to discuss the front solutions qualitatively. Assum-omy interested in the qualitative form of the shape of the

ing stationarity of the front in the comoving frame, we obtainfqnt The following simple method is sufficient for this task.
SN o Gy For uniform sliding states, this leads to valuesaofind v
a(j,t)y=a(j—ct), bH=v(j—ct), 32 . . . ’ .
(:v=a( ) vGH=vl ) (32 which are identical to the exact ones. For each particle we
wherec is the front velocity(23). From Eq.(31b), we obtain ~ introduce a sequence of timeg; defined byx;(t,j)=(2n
—ca’'=v’, which can be integrated leading to + 1)@ andx;(t, ;)>0. From these sequences, we obtain the
following approximations fov anda:

v=vp—Ca (33
2
Plugging Egs(32) and(33) into Eq.(314), and keeping only v(j,t)~ P a(j,)~=v(j,O(tm;-1—tj),
the first two terms oD, yields nj o tn-lj
(37)
A2\t L oam _
(1=cha’+ a"+g(@vo,0)=0, (34 \heren andm are chosen in such a way thi tho1<t
with <t,j, and (i) ty;_, is the time closest ta,;, ie.,
|tm j—1—tn,j| =minG|t; j_1—t,;|- This definition ofa is neces-
g(a,vg,c)=F—Fy(a,vo—ca). (35)  sary in order to avoid spurious values which differ from the

expected value by 2.

Equation (33) means a straight line in the velocity- For a fixed value of, one obtains a snapshot ofanda.
distance characteristi¢see Fig. 7. Front solutions exist for The superposition of many snapshots shifteccbgives the
those values ofy and ¢ for which Eq. (33) intersects the impression of a smooth cursee Fig. 8 We have tuned
velocity-distance characteristic of the uniform sliding stateuntil the curves are as smooth as possible. It turned out that
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FIG. 8. Quasicontinuum description of the two-domain solution.  FIG. 9. An example of a multidomain state. The parameters are
The values ofv anda are obtained from formula€37). 20 snap- the same as in Fig. 5.

shots taken at different times and shifteddiyare superimposed in . .
order to obtain the details of the fronts. The valuedé chosen in & Pair of two fronts form a bound molecule. The available

such a way that the superimposition yields a smooth curve. The be&listances between the fronts are quantized. Figure 9 shows
value ofc is 0.516. The parameters are the same as in Fig. 5. an example where this quantization is clearly seen. In accor-
dance with Shilnikov’s theorem, such molecules are possible

this method is a very accurate way to measure the front ve2nlY if the oscillatory tail decays slower than the nonoscilla-
locity c. The precursors and tails of both fronts are nonoscil{0"y 0ne[31,32 which is indeed the cadsee Sec. IV & As
lating and oscillating, respectively. Furthermore, the oscilla® consequence the system shows spatial chaos.
tory tail of the front on the left decays roughly two times FOr values of F near higher order resonances, the
slower than the precursor of the front on the right. BothVelocity-distance characteristic of the uniform sliding state
observations are in full agreement with our analytical reasonS1OWS several resonance folds. Thus multidomain states are
ing above. possﬂ_)Ie which are built up from more than two different
domain types. All our numerical experiments have shown
_ _ that no matter how many domain types occur in the transient,
C. Multidomain states at the end(i.e., in the long-time limit only two or three
Starting from an arbitrary initial condition one obtains domain types survive. Furthermore, all fronts travel with the
either a uniform sliding stat¢if a stable one exisjsor a  same velocityc. There is a simple argument why more than
multidomain state, but only rarely a two-domain state. Thisthree domain types are inconsistent with the last fact. Con-
is especially true for large systems. It is a very general besider the case of four different domain types with<a,
havior of bistable spatially extended systems, at least for theCaz<a, and v;>v,>v3z>v,. Between two consecutive
initial phase of the dynamics. Different parts of the systenvaluesa; anda, . 1, there should be no additional stable state
establish themselves independently into one of the bistabland only one unstable state. Thus if two such domain types
states. It is therefore natural that several domains occur. Afare neighbors, the states are functionally related in accor-
ter the initial formation of a multidomain state, domains maydance with Eq(27). Let us assume a sequence of domains
shrink and eventually disappear on a slow time scale. Thifrom right (domain type 1to left (domain type 4 Using Eq.
can be understood by the fact that an attractive force betwed27), we obtaina; . ;=A(a;). This sequence is therefore
the fronts exist$29]. This force is caused by the overlap of uniquely determined bg;. Now the condition that all fronts
the precursor, and the tail of the neighboring fronts. It can bénave the same speed cannot be fulfilled because there is only
calculated by singular perturbation thedr¥9,29. In the one free variable bufat least two conditions, namelyg;,
case of nonoscillating precursors and tails, the force de=c,3=c3,. Thus four different domain types are in contra-
creases exponentially with distani9]. In our case, where diction with the observation concerning the front velocities.
the tail is oscillating, the resulting force is also oscillating For F<b, domainlike solutions occur where in one do-
[19,30. Therefore, equilibrium positions are possible wheremain state the particles sit in potential welisrerage particle
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distancea is an integer multiple of z, e.g.,a=0) and do  main types,(iii) why the size of the domains is quantized,
not move. Such so-called traffic-jam solutions were alreadyiv) why states with several domains of the same type are
reported by Braun and co-workgrs5—17. They mainly oc-  possible,(v) why a multidomain state can be seen as an
cur near integer values afi27, where the domainlike states €xample of spatial chaos, ard) why for a fixed value of

discussed in this section are not possible. the external force= the number of stable states increases
exponentially withN. The huge number of stable states leads
V. CONCLUSION to multihysteretic behavior like in a ferromagnet, where the

position in the velocity-force characteristic strongly depends
In this paper the regular sliding statg@seriodic and qua- on the history.
siperiodic solutions of the FK model are investigated for The phenomenon of domainlike states, where each do-
large chains >100) and for values ofy, b, andF, main is characterized by a spatially periodic but stationary
where all forces in the equation of moti¢h are of the same solution, has already been found in hydrodynamical pattern
order. formation (Taylor-Couette[33] and Rayleigh-Beard [34]
Instead of classifying these attractors to be either periodi€ystem. Theoretically this behavior has been modeled by

or quasiperiodic, a more informative distinction is whethernonlinear phase equatiofis9,35,38. In our case the domain
their locally average particle density is uniform or not. In astates are periodic in space and time; they are traveling
periodic state the density is uniform because all particlegvaves.
perform the same motion, only shifted in time. The motion  In experiments where locally resolved measurements are
of the whole chain is completely determined by a singlenot possible, the most important consequence of the domain-
periodic function, the dynamical hull function. The velocity- like sliding states aréi) quasiperiodicity in the time signals
force characteristics of the periodic attractors show peaks ke the velocity of the center of maséi) flattening of the
certain values of the velocity. These peaks are caused dgsonance peaksee Fig. 6 and(iii) multihysteretic behav-
resonances of the “washboard” wave. In the frame of thelOr- Many of these features should disappear for small values
center of mass of the chain, the external potential can be seé N if they are caused by domainlike states. Because the
as a wavegwashboard wavewith wave numbea (which is  inertia term is important for these states, we do not expect it
the inverse average particle densiand frequency (which ~ in CDW systems. In adsorbate layers and ionic condu_ctors
is the average sliding velocityResonances occur for those the appearance of such states should be possible, but it may
values ofv wheren washboard waves are able to decay intoP€ difficult to drive themuniformly and to measure the
a phonon[wave numberk, frequencyw(k)] in accordance velocity-force characte.rlsnc.. The ideal systems to check our
with “momentum” and “energy” conservation[i.e., k theory are Josephson-junction arrays, because the force and
—na and (k)=nv]. A similar process with a decay into the velocity gorrespond to the driving current and the volt-
two phonons(parametric resonang@xplains why the uni- g€, respectively. Furthermore, the damping consgeand

form sliding state may be unstable even though the differenthe number of junction®l can be chosen by the fabrication
tial mobility is positive. process. The average distarece 27M/N is also easily ac-

Quasiperiodic states emerge from instabilities of uniformcessible, because the numibérof flux quanta can be chosen

sliding states. They are characterized by domains of differerRy the initial preparation of the system. Thus for rings of
average particle densities. In each domain the average pafore than 50 Josephson junctions we predict the occurrence
ticle velocity is uniform andnonzero The walls between ©f domainlike sliding states.

neighboring domains all move with the same velocity. This

domain-wall or front velocity is different from the velocity ACKNOWLEDGMENTS

of the center of mass. Thus each particle goes through all . .
domains. In a quasiperiodic attractor, not more than three We tha}nk H. Thomas for a critical readmg of th_e manu-
different domain types are possible. For chains close to thacrlpt. This quk was supported by the Swiss National Sci-
most commensurate casee., a is an integer multiple of ence Foundation.

21) the average particle velocity is zero in one domain. In

this so-called traffic-jam statgl5] the particles alternately APPENDIX A: NUMERICAL AND ANALYTICAL
switch between stationarity and sliding. Because the traffic- ~ APPROXIMATIONS OF THE HULL-FUNCTION
jam state exists for also finite temperatufd$,17,, states EQUATION (9)

with different sliding domains will presumably survive finite

In this appendix we describe the numerical scheme we

temperatures. . :
In this paper we have developed a quasicontinuum der_lave used to solve the differential delay equaii@nfor the

scription of the FK model on the basis of slowly varying dynamic _hull functionf(<p)._ In the simplest case, this

locally averaged inverse densiyand velocity. That is,a scheme also leads to a nonlinear analytical approximation.
SN C ' Because of Eqg8) and(10), we expand the dynamic hull

andv slowly depend on the particle ind¢xand the time. A function f into a Fourier series

set of partial differential equatiof€gs. (31)] governs the

dynamics of the variableGssumingj to be a continuous o

space variable It is not possible to solve these partial dif- flo)=> .M +c.c. (A1)

ferential equations analytically. But it is quite helpful to un- m=1

derstandi) why the FK model organizes itself into domain-

like states with domain states which are not determined fronin the numerical approximation we replace this infinite series

outside, (i) why there are not more than three different do-by a finite one with a cutofM, i.e.,=5_;—~=M_,. Plugging
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2) 1/2

this ansatz into the differential delay equati@®) leads to a
set of nonlinear algebraic equations for the coefficients y(A)=

{f1,f5, ... 2

b
A

~2 ~ A
2V \/1_ 22
w(a) Zi 7 w(a)y +

Fns -

(A9a)
[(mv)?—w?(ma)—iymv]f,=bln(f1,fp, ... £, (&2) with
wherew(k) is the phonon dispersion relatigh4), and 7= M?’ (A9b)
L Jo(A)+Jo(A)
27 .
Im(fyfo, . f, )= 2—f sif o+ f(¢)]e”"Mde. and
mJo
(A3) B=[Jo(A)— Jo(A)]b. (A%)
The driving forceF does not appear in the set of equations, ,_. -
(A2). That is, we first obtain a solution of EgA2) for a Using Eq.(A4), we obtain
given value ofv. After that, we obtain the corresponding A2
value of F by using Eq.(12), i.e., F(A)=yu(A)| 1+ 7) (A9d)

(A4) APPENDIX B: LINEAR STABILITY ANALYSIS

OF THE UNIFORM SLIDING STATE

F=9yv

1+2, m2|fm|2).
m=1

In the numerical approximation, we solve the set\of In this appendix we explain our procedure to calculate
algebraic equationg\2) with the Newton method. The most numerically the stability of the uniform sliding state. Further-
time-consuming part of the computation is the calculation ofmore, we derive an approximation fog .

Im. In order to speed up the computation we restrict our-  Plugging the Floquet-Bloch ans&fi9) into the linearized
selves to values of the cutdfl which are powers of 2. Now equation of motior(18) leads to
we are able to calculatd ,, ... |y} from{f,, ... fu} by

two fast Fourier transformation&FT’s). The first one is an
inverse FFT which calculates the hull function in real space
Next we calculate s[+f(¢)]. The second FFT yields
{Il, . !lM}'

In order to obtain reliable results, the value of the cutoff
M has to be chosen carefully. Due to the FFT the hull func
tion is approximated on a lattice with lattice constawiivi.
Because of Eq(7), this corresponds to a time resolution
At=m/(vM) of x;(t). The fastest time scale in the system is
given by 27 divided by the maximum phonon frequency,
which is 2 in accordance with Eq14). Assuming that the
fastest time scale has to be resolved at least by two dteps
we obtain reliable results only if

2 A5
> ___
vE (A5)
All results reported in this paper are obtained fdr=32.
Thusv has to be larger than 0.06.
For M=1, we obtain an analytic result parametrized by
the modulus off;. We write

A
Ee"”.

f, (A6)

v2Ci( @)+ (2h i+ Vv ci(@) + (NF+ A y)Cil @)

) 2

2i
=c(p—a)e” N K+c(p+a)e N K—2c (o)

—b cog ¢+ f(¢)]ck(e). (B1)
The Fourier ansatz
cl@)= 2> ckmeMe+c.c. (B2)
m=0

turns this equation into a set of infinitely many linear equa-

tions:
) 2k . ) .
) ma+T +(NHimo)“+ y(A+imo) |Cy m
=-b 2 (Kmfm’ck,m’""Kerm’C:ymf): (B3)
m'=0
where
1 (2= :
KmE_f cod o+ f(p)]eMdg. (B4)
2 0

Due to the integral representation of the Bessel functions of A9@in we have to choose a cutdil’ to solve this set

the first kind, we can obtaih(f,). Together with Eq(A2),
we obtain

[v?—w*(@)JA=Db[J(A)—Jo(A)]sin ¢, (A7)
yuA=Db[J,(A)+ Jo(A)]cos i. (A8)

The elimination ofys leads to polynomial of second order in
v2. Thus we obtain an analytic solution parametrizedfoy

numerically. In order to be consistent with the cut®#f

= 32 of the Fourier expansion of the hull functibrwe have
chosenM’=15. Because of Eq.19), the stability depends
on the numbeN of particles. For larg&l the eigenvaluek

lead to a continuous functiom (27k/N). Since we are
mainly interested in large systemd$50), we have chosen
N=100. It is difficult to check numerically whether the uni-
form sliding state is stable or not because of the Goldstone
mode\y=0. Our numerically obtained value af, fluctu-
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ates around zero because of unavoidable errors. Thereforehere 6, , is the Kronecker symbol. Wity=0 and these
our instability criterion reads as follows: The uniform sliding assumptions, EqB3) reduces to
state is unstable if at least one eigenvalue is larger than 0.05.
This value is considerably larger than the amplitude of the
numerical fluctuations oX. w(2)+ A2 b/2 Cro 0
We are able to obtain an analytical approximation of the ( ’ )z( ) (B6)
largest sliding velocity . at which parametric resonance is Cr.1 0
just able to destabilize the uniform sliding state. We do this
for zero damping because physical intuition tells us that
decreases monotonically witly. In fact, for y<1 andb  Where
=0(9Y), the largest sliding velocity is the undamped one
minus a correction term of ordey. The approximation
makes three assumption$} Parametric resonance @ oc-
curs for that value of} which maximizes;f(q). For O<a
< 7 this impliesq= . (ii) All Fourier coefficients ofc, are
zero excepicy o andcy ;. (i) The integralsK, are calcu-
lated only in leading order db, which yields A nontrivial solution of Eq.(B6) implies a zero determinant
leading to a characteristic polynomial of second ordernn (
~ if” —imed S1mt O-1m +iv/2)2. Solutions with a nonzero real part Bfoccur only
K=~ cogp)e de= 5 , (Bb5) ) SRR X
if (wg—v*/4)°<b?/4. Therefore we obtain Eq21).

bl2  wi+(A+iv)?

wo=w(k)=w(a+k)=w(al2tm7)=2 CO< 2) . (B7)
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